Penentuan Lokasi Sewa Gudang Distribusi Hand Sanitizer Berbasis Logika Fuzzy Mamdani
Main Article Content
Abstract
Kemajuan teknologi informasi yang berkembang sangat cepat saat ini menjadikan aktivitas bisnis semakin bergantung pada pemanfaatan sistem informasi sebagai sarana utama dalam pengelolaan dan penyampaian data di berbagai sektor industri. Dalam bisnis hand sanitizer, proses pengelolaan logistik memerlukan perencanaan yang matang, koordinasi yang efektif, serta pengendalian yang tepat untuk memastikan pergerakan dan penyimpanan barang berlangsung efisien dari sumber hingga ke konsumen akhir. Penentuan lokasi fasilitas penyimpanan dan distribusi, seperti gudang dan pusat distribusi, menjadi elemen strategis karena keputusan yang keliru dapat berdampak langsung pada efektivitas operasional dan biaya yang dikeluarkan. Dalam konteks tersebut, pendekatan logika fuzzy, khususnya metode Fuzzy Mamdani, menawarkan kemampuan analisis yang lebih fleksibel dan adaptif terhadap perubahan variabel serta dinamika pasar. Dengan pemilihan variabel input dan output yang tepat berdasarkan fungsi implikasi yang relevan, metode ini dapat membantu menghasilkan pertimbangan keputusan yang lebih akurat dalam menentukan lokasi sewa gudang distribusi hand sanitizer. Penggunaan pendekatan ini memberikan alternatif solusi pengambilan keputusan yang optimal dalam menghadapi kompleksitas situasi bisnis yang terus berubah.
Article Details
References
Akhtar, M. (2023). Logistics services outsourcing decision making: A literature review and research agenda. International Journal of Production Management and Engineering, 11(1), 73–88. https://doi.org/10.4995/ijpme.2023.18441
Akman, G., & Baynal, K. (2014). Logistics Service Provider Selection through an Integrated Fuzzy Multicriteria Decision Making Approach. Journal of Industrial Engineering, 2014, 1–16. https://doi.org/10.1155/2014/794918
Arshad, M. W., Sumanto, S., & Setiawansyah, S. (2024). Decision Support System Perspective Using Entropy and Multi-Attribute Utility Theory in the Selection of the Best Division Head. JURNAL MEDIA INFORMATIKA BUDIDARMA, 8(2), 1109. https://doi.org/10.30865/mib.v8i2.7603
Arya, V., & Kumar, S. (2021). A Picture Fuzzy Multiple Criteria Decision-Making Approach Based on the Combined TODIM-VIKOR and Entropy Weighted Method. Cognitive Computation, 13(5), 1172–1184. https://doi.org/10.1007/s12559-021-09892-z
Bakioglu, G., & Atahan, A. O. (2021). AHP integrated TOPSIS and VIKOR methods with Pythagorean fuzzy sets to prioritize risks in self-driving vehicles. Applied Soft Computing, 99, 106948. https://doi.org/10.1016/j.asoc.2020.106948
Department of Computer Science and Engineering, Technocrats Institute of Technology, Bhopal, Madhya Pradesh, India, Pandey, K., Mishra, A., Department of Mathematics, Government College Raigaon, Satna, Madhya Pradesh, India, Rani, P., Department of Engineering Mathematics, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Andhra Pradesh, India, Ali, J., School of Engineering and Technology, Department of Computer Science and Engineering, Sharda University, Greater Noida, Uttar Pradesh, India, Chakrabortty, R., & Capability Systems Centre, School of Engineering and Information Technology, UNSW Canberra, Australia. (2023). Selecting features by utilizing intuitionistic fuzzy Entropy method. Decision Making: Applications in Management and Engineering, 6(1), 111–133. https://doi.org/10.31181/dmame07012023p
Luyen, L. A., & Thanh, N. V. (2022). Logistics Service Provider Evaluation and Selection: Hybrid SERVQUAL–FAHP–TOPSIS Model. Processes, 10(5), 1024. https://doi.org/10.3390/pr10051024
Magableh, G. M. (2024). An integrated model for rice supplier selection strategies and a comparative analysis of fuzzy multicriteria decision-making approaches based on the fuzzy entropy weight method for evaluating rice suppliers. PLOS ONE, 19(4), e0301930. https://doi.org/10.1371/journal.pone.0301930
Nurkholis, E., Sanjaya, A., & Setiawan, A. B. (2019). Implementasi Logika Fuzzy Mamdani Dalam Penentuan Harga Sewa Mobil.
Okwu, M. O., Samuel, O. D., Otanocha, O. B., Tartibu, L. K., Omoregbee, H. O., & Mbachu, V. M. (2023). Development of ternary models for prediction of biogas yield in a novel modular biodigester: A case of fuzzy Mamdani model (FMM), artificial neural network (ANN), and response surface methodology (RSM). Biomass Conversion and Biorefinery, 13(2), 917–926. https://doi.org/10.1007/s13399-020-01113-1
Rachma, S. M., Nishom, M., & Handayai, S. F. (2023). Gastric Disease Diagnostic Expert System Application Using the Fuzzy Mamdani Method.
Sachdeva, N., Shrivastava, A. K., & Chauhan, A. (2021). Modeling supplier selection in the era of Industry 4.0. Benchmarking: An International Journal, 28(5), 1809–1836. https://doi.org/10.1108/BIJ-12-2018-0441
Tejash U. Chaudhari, Vimal B. Patel, Rahul G. Thakkar, & Chetanpal Singh. (2023). Comparative analysis of Mamdani, Larsen and Tsukamoto methods of fuzzy inference system for students’ academic performance evaluation. International Journal of Science and Research Archive, 9(1), 517–523. https://doi.org/10.30574/ijsra.2023.9.1.0443
Yang, W.-C., Choe, C.-M., Kim, J.-S., Om, M.-S., & Kim, U.-H. (2022). Materials selection method using improved TOPSIS without rank reversal based on linear max-min normalization with absolute maximum and minimum values. Materials Research Express, 9(6), 065503. https://doi.org/10.1088/2053-1591/ac2d6b